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Abstract. The q-oscillator of type one and the classical and the quantum q-defamations 
of SU(2) algebra realized through the q-oscillators are studied in the case of q being roots 
of unity, i.e. q* = 1. The q-excitations are found to be non-bosonic. In particular, when k 
is of rank 4 and 6, the q-excitations are shown to he fermionic and parafermionic 
respectively. 

1. Introduction 

We pointed out [1-4]t that the q-deformation of SU(2) algebra can be realized at 
classical level in Poisson brackets, and it is denoted SUq,fi+U(2). This was made in 
classical system with q-deformed oscillator of two different types. Through canonical 
quantization, SU,,,&) is transferred to the conventional SU,(2) algebra expressed 
in Lie brackets, denoted SU,,(2).  We emphasized that the *-quantization and q- 
deformation are two independent concepts and this should be true for all quantum 
groups [5-9] .  

In this paper we continue the studies on the classical and quantum q-deformations 
of SU(2) algebra via the q-deformed oscillators when q is the root of unity [4]. Here 
q is called a root of unity of rank k, if qk = 1, for k being any real number. We 
concentrate in this paper on the type one q-oscillator given in (I), (11) and [I] .  Similar 
analysis can be made for the type two q-oscillators as well, but we omit it for brevity. 

As we did in (I) and (11), we start by studying the classical dynamical system of 
q-oscillators, and show the q-deformed SU(2) algebra reduces to SUq,n-o(2) when q 
is real or even rank root of unity. After quantization it becomes SU,,(2). One of the 
most interesting and important issues for the case of q being the roots of unity is that 
the excitations in the q-oscillators are found to be non-bosonic. Especially when the 
rank k is 4 and 6, the q-excitations are fermionic and parafermionic respectively. 

This paper is organized in the following way. In section 2, we give a slightly modified 
approach to the realization of SU,(2) algebra via type one q-deformed oscillators with 
the parameter q being an arbitrary real number or root of unity. In section 3, we 
investigate the properties of the classical q-oscillator when q is a root of unity. Through 

'This work is supported in part by the National Natural Science Foundation of China 
t Here, and in what follows, we refer to [2,3] as (I) and (11). 
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the canonical quantization we obtain the quantum q-oscillator. A well defined excitation 
number operator is introduced. A discussion on the direct product of the Fock spaces 
to produce the j-representation of the SU,(2) algebra is given. Section 4 is devoted to 
the excitations of the quantum q-oscillator, which are usually non-bosonic. A detailed 
discussion for k = 4, 6 is provided, when the q-quanta are fermions and parafermions 
respectively. Their classical counterparts are indicated. In section 5, some brief 
discussions are presented. 

2. q-deformations of SU(2) when q is a root of unity 

Up to now, most of the investigations on the type one q-oscillator have been directed 
toward the case of q being real [9-11]. In the following, however, we give a more 
general discussion to include q being either real or roots of unity. 

The algebra SU,,,,(2) can be realized in a classical system with two q-deformed 
oscillators with Hamiltonian 

H ' =  z : i : + z ; i ; .  (2.1) 
If one takes q to be 1, the variables 21, ij reduce to undeformed variable z,, i,, and 
H' to the Hamiltonian H for the undeformed system. For arbitrary q (i.e., q is real 
or the root of unity), the following relations between these two sets of variables hold 
in a modified form 

sinh(yitzj) * z j  = G sinh(y%zO z, eil.(l,i,, rj = (J-----) J y i y i , Z ,  ij e-''"'',i' (2.2) 

(without summation over i ) ,  and y =log q. The complex conjugate is taken for the 
square root which may be taken of some negative value in the case of q being roots 
of unity. 

For the mode zj, we define the magnitude for the oscillation of q-oscillator, 
Niq = 2 ; ~ : .  When q = 1, one has N j  = Zjzi, the magnitude for the undeformed oscillator. 
For arbitrary q, N j ,  is related to Nt in the following way: 

Niq=l[Ntll. (2.3) 
The mode sets for the undeformed and deformed oscillators can he constructed for 
modes zi and z j  respectively according to their magnitudes. Clearly, if q = 1 the 
magnitude N;, =Mi takes the value from 0 to m, and so does it if q is an arbitrary real 
number, which is discussed in (I). When q is a root of unity, however, Njq is finite, 
which is investigated in detail in the following sections. 

In the phase space (V,R) of undeformed oscillators in ( I )  and (II), R =  
-i 'Ei (dz! n dij) ,  one has the Poisson brackets for the deformed variables, 

(2.4) 
[ij, z;}=iiS, dLlcosh(yijz,)l sinh y 

[z j ,  2;) = {ij, ij} = 0. 

It can be easily checked that there are always modes z j  so that the ohservables J+ = Z I  i;, 
J_ = z;i: and J, = f ( z l i ,  - z2i2), satisfy the following relations in Poisson brackets: 

[ J 3 ,  JJ= (-i)(*J+) (2.50) 

{J+, J-) = ( - i ) d 2 j J  (2.56) 
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where r) = +. The modes we want are those that satisfy 

7 = sign(tanh(2yN,)) = sign(tanh(2yN2)). (2.6) 

When q is real, condition (2.6) holds for 7 = +, and hence the SUq,n-o(2) symmetry 
exists; while q is kth rank root of unity, part of the modes gives rise to r) = + and 
hence SUq,,,,(2)t. 

Based upon (2.4), one can perform the canonical quantization of this oscillator 
sysiem [ i j .  As w e  remarked in (i)  and (iij, the deformed observabies J + ,  and 1, are 
all defined on phase space ( V, C l ) .  The canonical quantization is carried out by replacing 
the basic Poisson brackets by basic commutators for operators, 

[a , ,  a;] = 8, [ a T , a ; ] = [ a , , a , ] = ~  (2.7) 

while the variables zl, Z j  and Mcq are replaced by operators aj ,  ai', and Nj,=alra i  
iespe&e;y, We choose i,om,a; so 8s io have 

And the quantum counterpart of (2 .2)  is$ 

(2.9) 

J y N !  m ( N ,  + 1 )  

where [N,] may be negative, when q is root of unity, but the excitation number operator 

From 

[ J 3 , J * I = * J *  (2.10a) 

Ar,q is a:iays iioii-iizgatke. 
The quantum observables are J+=a:'a;,  J_=a;'a;,  J ,= (a :a , -a ' -a2a2) .  7 

the basic commutators, we have the algebra satisfied by the operators 

(2.10b) 

We can always select the states that obey the condition 

q =sign([N,][N,+I])=sign([N,+l][N,]). (2.11) 

In fact, the r) = + case supplies the SU,*(2 )  symmetry. For q real we have r) = + case 
only, and hence SU,*(2) symmetry only; for q being even rank root of unity, r) = + 
or -; for q being odd rank root of unity, more possibilities arises§. 

In the previous investigations, as  q is taken to be real, r )  is always +. We are to 
look into the case where q is root of unity of even rank, q may be + or -. As can be 
seen clearly in the following section, while the parameter q is root of unity of even 
rank, the Fock space of the q-oscillator splits into infinite number of subspaces denoted 
as V b  (see next section), which is finite dimensional. In each subspace, [ N J  is always 
positive or negative. To get the representation space of J,  and J 3 ,  one may make 

t Part of the modes gives rise to 7 = - and hence SUq,*-o(l, 1); see section 5. 
i: For the following discussion the phases a(ztZ5) will be irrelevant; we neglect them. 
5 When 7 is -, SU, , ( I ,  1 )  symmetry arises; see the short discussion provided in section S. 
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direct-product of the subspaces of the two oscillators, and the parameter I,, 
two components are both even or odd, one has 7 to be +, and otherwise -_ for the 

3. q-oscillator when qk = 1 

In this section, we investigate the properties of modes, magnitude and mode spaces 
for the classical q-oscillator when q is root of unity of even rank, and perform the 
canonical quantization to obtain the operators, and Fock space of the quantum 
q-oscillator. We give a more reasonable particle number operator for the q-quanta. A 
discussion regarding direct product of the Fock spaces to produce the representation 
of the SU,(2) algebra. As we concentrate on a single q-oscillator, we neglect the index 
i (= 1,2). 

First, let us observe a q-deformed oscillator in classical mechanics when 9 is root 
ofunityofevenranks.Let y=2?ri /k= ?ri/p,wherep= k/2isanintegerandq=e2"'/'= 
e"'/p. Hence the magnitude X, has maximum and minimum in its absolute value: 

the rightmost equality stands at X = $ p l  and I = 1,3,5, .  . . . In other words, the magni- 
tude X is (continuous) and finite, regardless of the magnitude of the undeformed 
ordinary oscillator that may be infinitely large. The leftmost equality stands for # = p l  
and I = 0, 1 ,2 , .  . . , indicating that the magnitude of the q-deformed oscillator may be 
0 while that of the undeformed oscillator is not 0. In the following, one can see that 
this property of the q-magnitude is the counterpart of quantum q-condensation of 
bosonic quanta. 

For generic K i n  the interval [PI, p l i p ) ,  Nq experiences an increasing from 0, and 
arriving a maximum value (sin(v/p))-', and then going down to 0 again. This property 
of the classical q-magnitude may be called 'q-saturation'. And the modes with the 
magnitude in this interval completes a subset of oscillation modes, named ?;, and it 
is obvious to see that 

m 

?=U v; 
1=0 

where ? is the set of oscillation modes for the ordinary oscillator. 
To understand this saturation property better, we consider p = 2 as an example. In 

this situation, one has Xq 1; when X = 21 + 1, I = 0, 1,2, , . . one has maximum value 
1. If has the spectrum in the interval.[21,21+2), mode z' of the magnitude X, 
completes a mode set e;. As A' goes up starting at 2, Xq becomes greater and greater, 
and at X=21+1,  Xq gains its maximum value 1. When K continues to increase, 
however, Xq begins decreasing, to 0 at X=21+2. In the next section, we will see that 
the saturation property in this situation (p  = 2) is just the classical counterpart of the 
Pauli exclusion principle. 

As in usual cases, after the canonical quantization the mode set gives rise to the 
Fock space for the quantum q-oscillator, and magnitude Nq the particle number 
operator N, = a"a', where a' and a" are annihilation and creation operators respec- 
tively. When the eigenvalues of N, which are integers in the interval [ p l , p l + p ) ,  the 
eigenvalue of Nq increases at a series of discrete values, gains maxima at one or two 
points, and then goes back to 0. The cycle completed is a Fock subspace Vk. 
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In fact, the Fock subspace can be constructed with the particle number eigenstates 
of undeformed oscillator. When q is a root of unity of even rank, the complete Fock 
subspace Vb can be constructed 

Vb=Iipl), IPl+l), . . . , Ip(l+1)-1))  

(3.3) 

where I = 0, 1,2 , .  . . . It is clear that Vb are identical as I takes different values, and 

m v=u v; (3.4) 
I 4  

where Vis the Fock space for the undeformed oscillator which is infinite dimensional. 
In the Fock subspace Vb, there is vacuum state Ipl) .  But only the vacuum state (0) in 
the Fock subspace v", is simultaneously the vacuum state for the undeformed oscillator. 
It should be emphasized that the operator N,  describes the vacuum states in various 
Fock subspaces correctly: 

N,IPO = 0 (3.5) 

but the eigenvalues of this operator are not always integers, so it is improper to be 
selected as particle number operator. This is a similar situation to that in parastatistics, 
where the eigenvalues of 4'4 are not integers, not even rational numbers, and a new, 
well defined number operator should be given. 

It is easy to see that we can actually define an operator gq which has the eigenvalue 

spectrum 0, 1,2,  , . . , p  - 1 that are integers. And this new operator describes vacuum 
states correctly, 

*,J pl) = 0. (3.6) 

In the following section, when we analyse the statistical properties of the q-quanta, 
we will find the definition of the new particle number operator more reasonable. 

Finally in this section, we make some clarification regarding the role played by the 
q sign. As one can notice, [NI < 0 in subspace Vi  with even I ,  [NI 2 0, is that with 
odd 1. And so when one makes direct multiplication of the Fock subspaces of the two 
oscillators, Vi,, to obtain the representation space of the algebra SU,*(Z)t  one should 
notice the following two cases to fix the sign 7: when AI = 11-12=0, q is +; and if 

<T E Nlmnnrl n\ on.4 W P  writn fA-\rmnllv i n  nn-r~trrn N = N l m . r A  m \  tn hn.m a - I A ~ P ~  '.4 ',\..'YYp,, "ll" , v u  .,La&- ."L'LLYLLJ .""Y'."LYL" '.4-.~\...""y,, I" '.Y..,"p.Yy-L 

ai- i , ~  IS -. 

4. Non-bosonic q-quanta and their symmetries 

In the present section, we concentrate on the statistical properties of q-quanta, especially 
the k = 4,6 cases which are the most physically appealing. We state that the operator 
gq coincides with the conventional particle number operator [14]. 

t Or SUq,A(l, 1); see section 5 .  
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If p = 2 ,  the set of modes for the classical q-oscillator is f'i={z', Ni\r[21,21+2)}. 
After canonical quantization, one obtains the complete and irreducible Fock spaces 
V i  = (l21), 121 + l)}. It can be checked that the operators forthe q-oscillator are fermionic 
operators satisfying the following algebraic relations 

[a',  a"], = 1 a'2= o " 2 = o .  (4.1) 

When they act on Fock space 

The newly defined particle number operator reads 

kq= N~ =(a"a ' -u 'ar t ) /2+f  (4.3) 

and the spectrum is (0, 1). This is the traditional definition for the fermion [14]. 
The saturation property of the magnitude Nq is just the classical counterpart of 

the Pauli exclusion principle [4]. As N increases, N9 experiences an increasing from 
0 to 1 and then a decreasing from 1 to 0. After canonical quantization, the eigenvalue 
of k9 jumps from 0 to 1. The occupation number cannot be 2 or greater, i.e. quanta 
are excluded by the state occupied by a single quantum. This is what is stated by the 
Pauli exclusion principle. It is of interest to notice that the SU(2) algebra is now 
realized by two identical bosonic oscillators and two identical fermionic oscillators in 
interaction. 

For the case of p = 3, the magnitude N9 is between 0 and 2/&. After the canonical 
quantization, the spectrum of N, in the complete irreducible Fock space V i =  
{I31), )31+ l), )31+2)} is {0, 1, 2}, which is exactly the spectrum for the parafermion 
[14]. And the operators a' and a" obey the following algebraic relations 

(4.4) a'+a'a'+ a'a'a't= a' a'a'*a'=a' (113 = a r t 3  = 0 

which is just the p = 1 case in [16]. According to [15], equations (4.4) are the algebraic 
relations for parafermions, except that a factor fi is to be multiplied to a' and a'* to 
recover the conventional algebraic relation. And therefore, the good particle number 
operator should be the following [14]: 

and this is exactly k9, with p - 1 = 2 the order of parafermions [14]. 

5. Remarks and discussion 

In the above, we analysed the realization of SU9(2) algebra, and the non-bosonic 
excitations, when q is root of unity of even rank in type one model. In fact, there exist 
non-bosonic excitations in the q-oscillators of type one, when q is root of unity of 
odd rank or fractional rank, or even irrational rank; however, this has nothing to do 
with the realization of SU,(2) algebra, and so will be discussed in a separate paper 
[12]. Similar analysis apply to the type two q-oscillator. 

It is also interesting to note that the SUJ 1, 1) symmetry may be found in the system 
of q-oscillators in the case of q being root of unity. In fact if (2.6) holds for n = -, 
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(2.5) stand for SU,n-o(l, l ) ,  the classical counterpart of the q-deformed SU,(l, 1 )  
algebra [17]. When canonically quantized, SU,*(l, 1 )  algebra [17] arises with (2.11) 
holds for 7 = -. 

Another thing worth noting is the multi-deformation of harmonic oscillators, and 
the multi-deformed algebras set up in (11). We got a chain for the complex variables 
of the q-deformed oscillators. In fact, that chain is endless if every deformation 
parameter is real. If the deformation parameters can be roots of unity, however, the 
chain may be truncated. The further deformations of the q-oscillator may be trivial. 
For example, when q, is root of unity of the fourth rank, then the q,-oscillator is 
fermionic. It can be checked easily that the q,-deformation is trivial. Because for a 
fermionic oscillator, (4.1) are valid, so we have N i =  a'+o'o''a'= a'+(l  -a' 'o')a'= N,, 
and then 

sinh(yN,)= 
i=o 

and this means [ N,] = N,. For parafermion case in type one model where k = 6, from 
(4.4), one can verify that N: = a"(a'a''a') = a''a'= N,,, and then [N,] = N,. So we 
remark that there is no realization of q-deformed algebras by fermionic or parafermionic 
oscillators except trivial ones. 

In [9], however, a q-deformation of Clifford algebra is put forward to realize the 
q-deformations of Lie algebras B, and D.. In fact, the q-Clifford algebra coincides 
with Clifford algebra, so the deformed B, and D, algebras seem to be trivial. We shall 
explain this subject in detail elsewhere. 

Finally, we would like to point out that the relationship between the j-representation 
of the SU,(2) algebra and the Fock spaces of the q-oscillators is an interesting topic 
still in progress. 
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